Research on Longitudinal Control Algorithm for Flying Wing Uav Based on Lqr Technology

نویسندگان

  • Yibo LI
  • Chao Chen
  • Wei Chen
چکیده

Linear Quadratic Regulator (LQR) is widely used in many practical engineering fields due to good stability margin and strong robustness. But there is little literature reports the technology that has been used to control the flying wing unmanned aerial vehicles (UAV). In this paper, aiming at the longitudinal static and dynamic characteristics of the flying wing UAV, LQR technology will be introduced to the flying wing UAV flight control. The longitudinal stability augmentation control law and longitudinal attitude control law are designed. The stability augmentation control law is designed by using output feedback linear quadratic method. It can not only increase the longitudinal static stability, but also improve the dynamic characteristics. The longitudinal attitude control law of the flying wing UAV is designed by using command tracking augmented LQR method. The controller can realize the control and maintain the flight attitude and velocity under the condition without breaking robustness of LQR. It solves the command tracking problems that conventional LQR beyond reach. Yibo LI, Chao Chen, Wei Chen. RESEARCH ON LONGITUDINAL CONTROL ALGORITHM FOR FLYING WING UAV BASED ON LQR TECHNOLOGY 2156 Considering that some state variables of the system are difficult to obtain directly, a control method that called quasi-command tracking augmented LQR is designed by combing with the reduced order observer, it retains all the features of command tracking augmented LQR and more suitable for the application of practice engineering. Finally, the control laws are simulated under the environment of Matlab/Simulink. The results show that the longitudinal control laws of the flying wing UAV which are designed based on LQR can make the flying wing UAV achieve satisfactory longitudinal flying quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV

This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...

متن کامل

Camera Based Localization for Autonomous UAV Formation Flight

This work considers the task of accurate in-air localization for multiple unmanned or autonomous aerial vehicles flying in close formation. The paper describes our experimental setup using two small UAVs and the details of the localization algorithm. The algorithm was implemented on two low-cost, electric powered, remote control aircraft with wing spans of approximately 2 meters. Our control so...

متن کامل

LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the ...

متن کامل

Modeling and Control of Highly Flexible Flying-wing Uav with Multiple Elevons and Propellers

A coupled and geometrically nonlinear structural/flight dynamics model with unsteady aerodynamics model is developed for a large scale highly flexible solar-powered UAV. Based on the model, the UAV is trimmed with all the all-wing span elevons deflecting conformably. For the longitudinal control, the equation of motion in trimming condition is linearized firstly, then the dynamic model of elevo...

متن کامل

Root Locus Based Autopilot PID’s Parameters Tuning for a Flying Wing Unmanned Aerial Vehicle

This paper depicts the applications of classical root locus based PID control to the longitudinal flight dynamics of a Flying Wing Unmanned Aerial Vehicle, P15035, developed by Monash Aerobotics Research Group in the Department of Electrical and Computer Systems Engineering, Monash University, VIC, Australia. The challenge associated with our UAV is related to the fact that all of its motions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013